The biggest challenge these organizations are facing however, is finding people with the right skills. Many organizations start with a single data scientist, which can lead to two different negative outcomes. One, the scientist doesn’t have a team or the tools they need in order to succeed, or two, the scientist has expertise in one area, but no knowledge in other domains within data science.
Alternatively, finding one single data scientist with all the key skills they need can also prove difficult and expensive. To overcome these challenges, there are four potential strategies organizations can adopt:
Especially when there are time and budget constraints, having data science related work completed by outside sources can be worth looking into. This approach can also be useful with an organization’s first data science project where, rather than investing time, money, and resources into forming an internal team, it is important to first determine how data science fits into the organization’s specific goals.
DSaaS can take two different forms:
In 2009, Netflix held a competition in which they asked data scientists to predict the probability of someone enjoying a movie based on recommendations that get served up through their past activity and preferences. Over 50,000 people signed up to compete for the $1,000,000 prize. Instead of hiring and paying a team for over a year to solve this, Netflix ended up with 50,000 distinct solutions to this problem.
Companies such as Kaggle and DrivenData have since launched several platforms and hosted hundreds of data science competitions. These bring together the best minds and talent to solve complex problems. There are numerous benefits to these competitions:
While the possibilities are endless, when running such a competition, the organization must state the problem very clearly, and provide a very clean dataset in order to avoid potential risks. Many a times, the solutions can be extremely complex, which can lead to very high implementation costs.
Overall, crowdsourcing has no guarantees and can pose some data privacy concerns, but it can also deliver a wide range of creative solutions.
The option of repositioning current members within the organization is often overlooked. While the organization may not have any existing employees that work in data science, that doesn’t mean no one in the organization has the required skills. It is likely that there are at least a few people who have some technical know-how, such as knowing how to obtain, presenting, or modeling data. It can be in an organization’s best interest to help those members expand their skills, as they already know the organization, the data, and its problems.
There are several different courses of action that can be taken to go about expanding skills of existing employees:
The other common strategy is to build an entirely new team from ground up. There are two important conditions to this option working successfully: 1. the organization might find the right people to hire, but their domain knowledge may not be a must-have for the business. 2. It can be difficult to find the right people, and new people means they don’t have deep domain knowledge. If deep domain knowledge isn’t critical, this approach can work well. Data science people are also in very high demand, and studies like those from McKinsey & Company show that there is a shortage of available talent.
Data science is still very new, and to be successful it Is essential to find the right people for the job at your organization. While each of the people strategies highlighted here have its own benefits and challenges, they are an excellent place to start identifying what will work best for you and your organization.
To learn more about the possibilities of AI and data science, visit The Spur Group’s client stories.